Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26326, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404868

RESUMO

Dyslipidemia often accompanies type 2 diabetes mellitus (T2DM). Elevated blood glucose in patients commonly leads to high levels of lipids. Lipid molecules can play a crucial role in early detection, treatment, and prognosis of T2DM with dyslipidemia. Previous lipid studies on T2DM mainly focused on Western diabetic populations with elevated blood glucose. In this research, we investigate both high blood sugar and high lipid levels to better understand changes in plasma lipid metabolism in newly diagnosed Chinese T2DM patients with dyslipidemia (NDDD). We used a plasma lipid analysis method based on ultra-high performance liquid chromatography coupled with mass spectrometry technology (UHPLC-MS) and statistical analysis to characterize lipid profiles and identify potential biomarkers in NDDD patients compared to healthy control (HC) subjects. Additionally, we examined the differences in lipid profiles between hyperlipidemia (HL) patients and HC subjects. We found significant changes in 15 and 23 lipid molecules, including lysophosphatidylcholine (LysoPC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and ceramide (Cer), in the NDDD and HL groups compared to the HC group. These altered lipid molecules are associated with five metabolic pathways, with sphingolipid metabolism and glycerophospholipid metabolism being the most relevant to glucose and lipid metabolism changes. These lipid biomarkers are strongly correlated with traditional markers of glucose and lipid metabolism. Notably, Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:1/16:1), SM(d18:1/24:1), and SM(d18:2/24:1) were identified as essential potential biomarkers closely linked to clinical parameters through synthetic analysis of receiver operating characteristic curves, random forest analysis, and Pearson matrix correlation. These lipid biomarkers can enhance the risk prediction for the development of T2DM in individuals with dyslipidemia but no clinical signs of high blood sugar. Furthermore, they offer insights into the pathological mechanisms of T2DM with dyslipidemia.

2.
BMC Cancer ; 23(1): 403, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142967

RESUMO

BACKGROUND: Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) is regarded as an inhibitory molecule. However, the importance of LILRB1 expression in glioma has not yet been determined. This investigation examined the immunological signature, clinicopathological importance and prognostic value of LILRB1 expression in glioma. METHODS: We used data from the UCSC XENA database, the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, the STRING database, the MEXPRESS database and our clinical glioma samples to perform bioinformatic analysis and used vitro experiments to examine the predictive value and potential biological roles of LILRB1 in glioma. RESULTS: Higher LILRB1 expression was considerably present in the higher WHO grade glioma group and was linked to a poorer prognosis in patients with glioma. Gene set enrichment analysis (GSEA) revealed that LILRB1 was positively correlated with the JAK/STAT signaling pathway. LILRB1 combined with tumor mutational burden (TMB) and microsatellite instability (MSI) may be a promising indicator for the effectiveness of immunotherapy in patients with glioma. Increased LILRB1 expression was positively linked with the hypomethylation, M2 macrophage infiltration, immune checkpoints (ICPs) and M2 macrophage makers. Univariate and multivariate Cox regression analyses determined that increased LILRB1 expression was a standalone causal factor for glioma. Vitro experiments determined that LILRB1 positively enhanced the proliferation, migration and invasion in glioma cells. MRI images demonstrated that higher LILRB1 expression was related with larger tumor volume in patients with glioma. CONCLUSION: Dysregulation of LILRB1 in glioma is correlated with immune infiltration and is a standalone causal factor for glioma.


Assuntos
Glioma , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Humanos , Antígenos CD/genética , Biologia Computacional , Glioma/genética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Pacientes , Prognóstico
3.
J Pharm Biomed Anal ; 230: 115386, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37044004

RESUMO

Mangiferin, a natural C-glucoside xanthone, is one of the major bioactive ingredients derived from the dry rhizome of Anemarrhenae rhizome, which has been reported to exhibit various pharmacological effects, including anti-oxidant, anti-inflammatory, anti-fatty liver, anti-metabolic syndrome, and anti-diabetic. However, the precise molecular mechanisms underlying its impact on phospholipid metabolism in the erythrocyte membrane of type 2 diabetes mellitus (T2DM) remain unclear. The present research aimed to evaluate the effects of mangiferin on glucose and lipid metabolism in T2DM model rats and discuss the relationship between lipid metabolites and potential targets involved in the hypoglycemic effects by integrating lipidomics and network pharmacology method. After 8 consecutive weeks of treatment with mangiferin, the T2DM model rats exhibited significant improvements in several biochemical indices and cytokines, including fasting blood glucose (FBG) levels after 12 h of fasting, fasting insulin level (FINS), total cholesterol (T-CHO), triacylglycerols (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), homeostasis model assessment of insulin resistance (HMOA-IR), TNF-α and IL-6. A total of 22 differential lipid metabolites were selected from erythrocyte membrane phospholipids, which were closely associated with the processes of T2DM. These metabolites mainly belonged to glycerophospholipid metabolism and sphingolipid metabolism. Based on network pharmacology analysis, 22 genes were recognized as the potential targets of mangiferin against diabetes. Moreover, molecular docking analysis revealed that the targets of TNF, CASP3, PTGS2, MMP9, RELA, PLA2G2A, PPARA, and NOS3 could be involved in the modulation of inflammatory signaling pathways and arachidonic acid (AA) metabolism to improve IR and hyperglycemia. The combination of immunohistochemical staining and PCR showed that mangiferin could treat T2DM by regulating the expression of PPARγ protein and NF-κB mRNA expression to impact glycerophospholipids (GPs) and AA metabolism. The present study showed that mangiferin might alleviate IR and hyperglycemia of T2DM model rats via multiple targets and multiple pathways to adjust their phospholipid metabolism, which may be the underlying mechanism for mangiferin in the treatment of T2DM.


Assuntos
Anemarrhena , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Hiperglicemia , Xantonas , Ratos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Lipidômica , Rizoma/química , Membrana Eritrocítica/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Xantonas/farmacologia , Xantonas/uso terapêutico , Hiperglicemia/tratamento farmacológico , Fosfolipídeos , Colesterol
4.
Biomed Chromatogr ; 32(11): e4332, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29981286

RESUMO

Hao Jia Xu Re Qing Granules (HJ), is an effective clinically used antipyretic based on traditional Chinese medicine. Although its antipyretic therapeutic effectiveness is obvious, its therapeutic mechanism has not been comprehensively explored yet. In this research, we first identified potential biomarkers which may be relevant for the antipyretic effect of HJ based on urine metabolomics using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A rat model of fever was established using the yeast-induced febrile response. Total-ion-current metabolic profiles of different groups were acquired and the data were processed by multivariate statistical analysis-partial least-squares discriminant analysis. As envisioned, the results revealed changes of urine metabolites related to the antipyretic effect. Fourteen potential biomarkers were selected from the urine samples based on the results of Student's t-test, "shrinkage t", variable importance in projection and partial least-squares discriminant analysis. N-Acetylleucine, kynurenic acid, indole-3-ethanol, nicotinuric acid, pantothenic acid and tryptophan were the most significant biomarkers found in the urine samples, and may be crucially related to the antipyretic effect of HJ. Consequently, we propose the hypothesis that the significant antipyretic effect the HJ may be related to the inhibition of tryptophan metabolism. This research thus provides strong theoretical support and further direction to explain the antipyretic mechanism of HJ, laying the foundation for future studies.


Assuntos
Antipiréticos/farmacocinética , Biomarcadores/urina , Medicamentos de Ervas Chinesas/farmacocinética , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Antipiréticos/farmacologia , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Febre/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
J Sep Sci ; 40(13): 2713-2721, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28485887

RESUMO

Er-Zhi-Pill, which consists of Ligustri lucidi fructus and Ecliptae prostratae herba, is a classical traditional Chinese medicinal formulation widely used as a liver-nourishing and kidney-enriching tonic. To identify the bioactive ingredients of Er-Zhi-Pill and characterize the variation of chemical constituents between co-decoction and mix of individually decocted L. lucidi fructus and E. prostratae herba, a novel metabolomics approach based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in both positive and negative ion modes, was established to comprehensively analyze chemical constituents and probe distinguishable chemical markers. In total, 68 constituents were unambiguously or tentatively identified through alignment of accurate molecular weights within an error margin of 5 ppm, elemental composition and fragmentation characteristics, including eight constituents, which were confirmed by comparing to reference standards. Furthermore, principal component analysis and partial least squares discriminant analysis using Simca-p+ 12.0 software were applied to investigate chemical differences between formulations obtained by co-decoction and a mixture of individual decoctions. Global chemical differences were found in samples of two different decoction methods, and 16 components, including salidroside, specneuzhenide and wedelolactone, contributed most to the observed differences. This study provides a basic chemical profile for the quality control and further mechanism research of Er-Zhi-Pill.


Assuntos
Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas , Metabolômica , Análise Discriminante
6.
Chromatographia ; 75(3-4): 111-129, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22307991

RESUMO

A rapid and sensitive UPLC/Q-TOF-MS method has been established for analysis of the constituents in rat serum after oral administration of Fufang Zhenzhu Tiaozhi (FTZ) capsule, an effective compound prescription for treating hyperlipidemia in the clinic. The UPLC/MS information of samples was obtained first in FTZ preparation and FTZ-treated rat serum. Mass spectra were acquired in both negative and positive ion modes. Thirty-six constituents in rat serum after oral administration of FTZ were detected, including the alkaloids, ginsenosides, pentacyclic triterpenes, and their metabolites. These chemicals were identified based on the retention time and mass spectrometry data with those of authentic standards or comparison of the literatures reports. Twenty-seven prototype components originated from FTZ and nine were the metabolites of the FTZ constituents. These results shed light on the potential active constituents of the complex traditional Chinese medicinal formulas.

7.
J Ethnopharmacol ; 135(2): 299-307, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21396994

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Based on a theory of Chinese Medicine, Regulating Gan (liver) to lower lipids that is in brief to regulate the lipid metabolic related factors in the liver will improve serum lipid profile, we have developed Fufang Zhenzhu Tiao Zhi (FTZ) which includes eight herbs that are quality assured. FTZ has been developed with the potential to correct abnormal lipid metabolism. This Chinese herbal medicine has been prescribed for 20 years, which has been issued patent and clinically proven for use in the treatment of dyslipidemia. AIM OF THE STUDY: To investigate the cholesterol-lowering effect and the mode of action of FTZ extract on high lipid diet induced hyperlipidemic rats. MATERIALS AND METHODS: The FTZ was prepared by alcohol and water extraction of eight herbs that have been quality-controlled according to the protocol. The cholesterol-lowering effect of FTZ was evaluated on SD rats fed with high-lipid diet. RT-PCR and western blot were used to analyze the gene expression of cholesterol metabolism-related enzymes including HMG-CoA reductase and cholesterol 7α-hydroxylase (CYP7A1) in the livers of the rats. The activity of HMG-CoA reductase and CYP7A1 were assessed by colorimetrical method and by quantification of the cholesterol metabolite of CYP7A1 using HPLC analysis respectively. RESULTS AND CONCLUSIONS: FTZ significantly decreased the levels of serum total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), whilst elevated the serum high-density lipoprotein cholesterol (HDL-C) and decreased serum atherogenic index (A.I.) values in high lipid diet induced hyperlipidemic rats. Furthermore, FTZ showed significant antihyperlipidemic effect by at least three pathways in the high lipid diet induced hyperlipidemic rats: (1) upregulating the gene expression and activity of CYP7A1 which promotes the conversion of cholesterol into bile acid; (2) downregulating the gene expression and activity of HMG-CoA reductase to reduce de novo synthesis of cholesterol; (3) increasing the cholesterol excretion from feces. In these three pathways, HMG-CoA reductase and CYP7A1 are two pivotal enzymes in lipid cholesterol metabolism and are expressed mainly in hepatic cells, which support our new TCM treatment strategy: Modulating Liver to Treat Hyperlipemia.


Assuntos
Anticolesterolemiantes/uso terapêutico , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol/sangue , Medicamentos de Ervas Chinesas/uso terapêutico , Hidroximetilglutaril-CoA Redutases/metabolismo , Animais , Sequência de Bases , Western Blotting , Cromatografia Líquida de Alta Pressão , Primers do DNA , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...